Diffusion, exclusion, and specific binding in a large channel: a study of OmpF selectivity inversion.

نویسندگان

  • Antonio Alcaraz
  • Ekaterina M Nestorovich
  • M Lidón López
  • Elena García-Giménez
  • Sergey M Bezrukov
  • Vicente M Aguilella
چکیده

We find that moderate cationic selectivity of the general bacterial porin OmpF in sodium and potassium chloride solutions is inversed to anionic selectivity in concentrated solutions of barium, calcium, nickel, and magnesium chlorides. To understand the origin of this phenomenon, we consider several factors, which include the binding of divalent cations, electrostatic and steric exclusion of differently charged and differently sized ions, size-dependent hydrodynamic hindrance, electrokinetic effects, and significant "anionic" diffusion potential for bulk solutions of chlorides of divalent cations. Though all these factors contribute to the measured selectivity of this large channel, the observed selectivity inversion is mostly due to the following two. First, binding divalent cations compensates, or even slightly overcompensates, for the negative charge of the OmpF protein, which is known to be the main cause of cationic selectivity in sodium and potassium chloride solutions. Second, the higher anionic (versus cationic) transport rate expected for bulk solutions of chloride salts of divalent cations is the leading cause of the measured anionic selectivity of the channel. Interestingly, at high concentrations the binding of cations does not show any pronounced specificity within the divalent series because the reversal potentials measured in the series correlate well with the corresponding bulk diffusion potentials. Thus our study shows that, in contrast to the highly selective channels of neurophysiology that employ mostly the exclusion mechanism, quite different factors account for the selectivity of large channels. The elucidation of these factors is essential for understanding large channel selectivity and its regulation in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH). We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effec...

متن کامل

اثرات میدان الکترومغناطیسی تلفن همراه بر عملکرد تک نانوکانال پروتیینی OmpF: یک رویکرد تجربی

Background: Widespread of telecommunication systems in recent years, have raised the concerns on the possible danger of cell phone radiations on human body. Thus, the study of the electromagnetic fields on proteins, particularly the membrane nano channel forming proteins is of great importance. These proteins are responsible for keeping certain physic-chemical condition within cells and managin...

متن کامل

The binding of free and copper-complexed fluoroquinolones to OmpF porins: an experimental and molecular docking study

Bacterial resistance is a critical public health issue and the development of alternative antibiotics to counteract this problem is an urgent matter. Fluoroquinolones are widely used antibiotics and numerous cases of bacterial resistance to these drugs have already been reported. One important mechanism of resistance is the decrease of the permeability of the bacterial membrane to antibiotics b...

متن کامل

The binding of free and copper-complexed fluoroquinolones to OmpF porins: an experimental and molecular docking study

Bacterial resistance is a critical public health issue and the development of alternative antibiotics to counteract this problem is an urgent matter. Fluoroquinolones are widely used antibiotics and numerous cases of bacterial resistance to these drugs have already been reported. One important mechanism of resistance is the decrease of the permeability of the bacterial membrane to antibiotics b...

متن کامل

Cloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami

Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 2009